
A Tight Bound on the Worst-Case Number
of Comparisons for Floyd’s Heap Construction
Algorithm

Ioannis Paparrizos

Abstract In this paper a tight bound on the worst-case number of comparisons for
Floyd’s well-known heap construction algorithm is derived.1 It is shown that at most
2n− 2μ(n)−σ(n) comparisons are executed in the worst case, where μ(n) is the
number of ones and σ(n) is the number of zeros after the last one in the binary
representation of the number of keys n.

Key words Algorithm analysis • Worst case complexity • Data structures
• Heaps

1 Introduction

Floyd’s heap construction algorithm [3] proposed in 1964 as an improvement of the
construction phase of the classical heapsort algorithm introduced earlier that year by
Williams [9] in order to develop an efficient in-place general sorting algorithm. The
importance of heaps in representing priority queues and speeding up an amazing
variety of algorithms is well documented in the literature. Moreover, the classical
heapsort algorithm and, hence, Floyd’s heap construction algorithm as part of it is
contained and analyzed in each textbook discussing algorithm analysis, see [1] and
[2] for example.

1This paper was also presented at Student Research Forum of SOFSEM’11 [Paparrizos, A tight
bound on the worst-case number of comparisons for Floyd’s heap construction algorithm (2011)].

I. Paparrizos (�)
Computer Science Department, Columbia University, New York, NY, USA
e-mail: jopa@cs.columbia.edu

A. Migdalas et al. (eds.), Optimization Theory, Decision Making, and Operations Research
Applications, Springer Proceedings in Mathematics & Statistics 31,
DOI 10.1007/978-1-4614-5134-1_10, © Springer Science+Business Media New York 2013

153

154 I. Paparrizos

Floyd’s algorithm is optimal as long as complexity is expressed in terms of sets
of functions described via the asymptotic symbols O, Θ , and Ω . Indeed, its linear
complexity Θ(n), both in the worst and best case, cannot be improved as each object
must be examined at least once. However, it is an established tradition to analyze
algorithms solving comparison-based problem by counting mainly comparisons,
see, for example, Knuth [5] who states that the theoretical study of comparison
counting gives us a good deal of useful insight into the nature of sorting processes.

Despite the overwhelming attention received by the computer community in
the more than 45 years of its life, a tight bound on the worst-case number of
comparisons holding for all values of n, is, to our knowledge, still unknown. Kruskal
et al. [6] showed that 2n− 2�log(n+ 1)� is a tight bound on the worst-case number
of comparisons, if n = 2k− 1, where k is a positive integer, and, to our knowledge,
this is the only value of n for which a tight upper bound has been reported in the
literature.

Schaffer [8] showed that n−�log(n+ 1)�+λ (n), where λ (n) is the number of
zeros in the binary representation of n, is the sum of heights of sub-trees rooted
at internal nodes of a complete binary tree, see also [4] for an interesting geometric
approach to the same problem. Using this result we show that 2n−2μ(n)−σ(n) is a
tight bound on the worst-case number of comparisons for Floyd’s heap construction
algorithm. Here, μ(n) is the number of ones and σ(n) is the number of zeros after
the last (right most) one in the binary representation of the number of keys n.

2 Floyd’s Heap Construction Algorithm

A maximum heap is an array H the elements of which satisfy the property:

H(�i/2�)≥ H(i), i= 2,3, . . . ,n. (1)

Relation (1) will be referred to as the heap property. A minimum heap is similarly
defined; just reverse the inequality sign in (1) from ≥ to ≤. When we simply say a
heap we will always mean a maximum heap. A nice property of heaps is that they
can be represented by a complete binary tree. Recall that a complete binary tree is
a binary tree in which the root lies in level zero and all the levels except the last
one contain the maximum possible number of nodes. In addition, the nodes at the
last level are positioned as far to the left as possible. If n = 2k − 1, the last level
�logn�= k−1 contains the maximum possible number 2k−1 of nodes. In this case
the complete binary tree is called per f ect. The distinguished path, introduced in
[5], of a complete binary tree that connects the root node 1 with the last leaf node n,
will play an important role in deriving our results. It is well known, see for example
[5], that the nodes of the distinguished path correspond to the digits of the binary
expression of n. Figure 1 illustrates a complete binary tree, its distinguished path

Floyd’s Heap Construction Algorithm 155

Fig. 1 A complete binary tree, its distinguished path (dashed edges), a special path (thick edges)
and the leftmost path (dotted edges). The numbers by the nodes of the distinguished path are the
digits of the binary expression (11001) of n= 25

and the corresponding binary expression of n. In terms of binary trees the heap
property is stated as follows:

The value of a child is smaller than or equal to the value of its parent.

It is easily verified that the value of the root is the largest value. Also, each sub-
tree Tj of the complete binary tree representing a heap is also a heap and, hence,
the value H(j) is the largest value among those that correspond to the nodes of Tj.
A sub-array H(i : n) for which the heap property is satisfied by each node j the
parent of which is an element of H(i : n), is also called a heap. Here the expression
j : n denotes the sequence of indices j, j+ 1, j+ 2, . . . ,n.

An almost heap is a sub-array H(i : n) all nodes of which satisfy the heap
property except possibly node i. If key H(i) violates the heap property, then
H(i)< max{H(2i),H(2i+ 1)}.

The main procedure of Floyd’s heap construction algorithm, called in this paper
heapdown, works as follows. It is applied to an almost heap H(j : n) and converts
it into a heap. In particular, if m = H(j) satisfies the heap property H(j) ≥
max{H(2 j),H(2 j+ 1)} and, hence, H(j : n) is a heap, the algorithm does nothing.
Otherwise, it swaps key m = H(j) with the maximum child key H(jmax). Then, it
considers the child jmax which currently contains key m, and repeats the procedure
until the heap property is restored. Algorithm 1 shows a formal description of the
algorithm.

156 I. Paparrizos

Algorithm 1: HEAPDOWN(H(i. . . n))
while 2i+1 ≤ n do

k = 2i
if H(k) <H(k+1) then

k = k+1
end if
if H(i)<H(k) then

swap(H(i),H(k))
i= k

else
return H(i . . .n)

end if
end while
if 2i= n and H(i)< H(n) then

swap(H(i),H(n))
return H(i . . .n)

end if

Algorithm 2: FLOYD-BUILDHEAP(H)
for i= �n/2� to 1 step -1 do

heapdown(H(i. . . n))
end for
return H

Floyd’s heap construction algorithm, called Floyd—buildheap procedure in this
paper, applies procedure heapdown to the sequence of almost heaps

H(�n/2� : n),H(�n/2�− 1 : n), . . . ,H(1 : n). (2)

As the sub-array H(�n/2�+1 : n) consists of leafs and, therefore, it is a heap and
procedure heapdown converts an almost heap to a heap, the correctness of procedure
Floyd—buildheap is easily shown.

When procedure heapdown is applied to the almost heap H(j : n) key m= H(j)
moves down one level per iteration. In general, two comparisons are executed per
level, one comparison to find the maximum child and one to determine whether key
m should be interchanged with the maximum child key. However, there is a case in
which just one comparison is executed. This happens when key m is positioned at
node �n/2� and n is even. Then, internal node n/2 has just one child, the last node n,
and therefore no comparison is needed to find the maximum child. We will see in the
next section, when we will investigate the worst case of procedure Floyd-buildheap,
that this situation happens quite often, if n is even. Procedure FLOYD-BUILDHEAP
describes formally Floyd’s algorithm.

Floyd’s Heap Construction Algorithm 157

3 A Tight Bound on the Worst-Case Number of Comparisons

It is well known that the number of interchanges performed by Floyd’s heap
construction algorithm is bounded above by the sum t(n) of heights of sub-trees
rooted at the internal nodes of a complete binary tree. Schaffer [8] showed that:

t(n) = n−�log(n+ 1)�+λ (n), (3)

where λ (n) is the number of zeros in the binary representation of n. For the sake of
completeness of the presentation we provide a short proof based on the geometric
idea described in [4]. We associate a special path with each internal node of
the binary tree. The special path connects a node, say j, with a leaf of the subtree
Tj rooted at node j. The first edge of the special path is a right edge and all the
remaining edges are left edges, see Fig. 1. In particular, the nodes of the special
path are j,2 j+ 1,22 j+ 2,23 j+ 22, . . . ,2k j+ 2k−1. Observe now that the edges of
all special paths cover all the edges of the binary tree exactly ones except the �logn�
edges of the leftmost path, see Fig. 1. As no two special paths contain a common
edge, the number of edges of all special paths is n− 1−�logn�.

The lengths of special paths are closely related to the heights of the sub-trees.
Recall that the length of a path is the number of edges it contains. Denote by sp(j)
the special path corresponding to node j. If internal node j does not belong in the
distinguished path, then length(sp(j)) = h(Tj). If internal node j belongs in the
distinguished path and the right edge (j,2 j+ 1) is an edge of the distinguished
path, then length(sp(j)) = h(Tj). In that case the first edge of sp(j) belongs in the
distinguished path and the digit of the binary expression of n corresponding to node
j is 1. If internal node j belongs in the distinguished path and the left edge (j,2 j)
is an edge of the distinguished path, then h(Tj) = length(sp(j))+ 1. In that case
the first edge of sp(j) does not belong to the distinguished path and the digit of
the binary expression of n corresponding to node j is 0. Summing up all heights of
internal nodes we get

t(n) = n− 1−�logn�+λ (n) = n−�log(n+ 1)�+λ (n). (4)

In computing, our tight bound on the worst-case number of comparisons, two
cases must be considered, n even and n odd. We first take care of the case n is odd.

Lemma 1. Let n be odd. Then the maximum number of comparisons executed by
Floyd’s heap construction algorithm is

2t(n) = 2(n−�log(n+ 1)�+λ (n)). (5)

Proof. If n is odd, each internal node has exactly two children and, hence, each key
swap corresponds to two key comparisons. Therefore 2t(n) is an upper bound on
the number of comparisons. �

158 I. Paparrizos

We show now that this bound is tight. To this end we construct a special worst-
case array H. In particular H satisfies the following properties

1. The elements of H are the n distinct keys 1,2, . . . ,n.
2. The nodes in the distinguished path are assigned the �log(n+ 1)� largest keys.

In particular, the nodes in levels 0,1,2, . . . , log(n) are assigned the keys n−�log
(n+ 1)�+ 1,n−�log(n+ 1)�+ 2, . . .,n, respectively.

3. If j is a node not belonging in the distinguished path, sub-tree Tj is a minimum
heap.

Apply now procedure Floyd-buildheap to the array H described previously.
When procedure heapdown is called on the almost heap H(j : n) and j is not a
node of the distinguished path, key m = H(j) will move all the way down to the
bottom level of sub-tree Tj. This is so because key m is the smallest among the
keys corresponding to nodes of the sub-tree rooted at node j, see property 3. Also,
two comparisons are executed per level. When procedure heapdown is applied to
an almost heap H(j : n), where j is a node of the distinguished path, key m = h(j)
will follow the distinguished path all the way down to the bottom level taking the
position of leaf node n, see property 2. Again, two comparisons are executed per
level and, hence, the number 2n− 2�log(n+ 1)�+ 2λ (n) is a tight bound on the
worst-case number of comparisons. �

Next lemma takes care of the case n even.

Lemma 2. If n is even the exact worst case number of comparisons for Floyd’s
heap construction algorithm is

2(n−�log(n+ 1)�+λ (n))−σ(n), (6)

where σ(n) is the number of zeros after the last one in the binary representation
of n.

Proof. Let (bmbm−1 . . .b2b1b0) be the binary representation of n. Let also
bkbk−1 . . .b2b1b0 be the last k+ 1 digits of the binary representation of n such
that bk = 1 and bk−1 = bk−2 = · · ·= b1 = b0 = 0. �

As n is even b0 = 0 and, hence, k ≥ 1. Consider now an internal node of height
j ≤ k lying at the distinguished path. It is easily verified, using inductively the well-
known property ��n/2�/a� = �n/a2� of the floor function, that the index at that
node is �n/2 j� . When procedure Floyd-buildheap calls procedure heapdown on the
almost heap H(�n/2 j� : n) key m = H(�n/2 j�) will move down the levels either
following the distinguished path or moving to the right of it at some point. This is
so because all the edges (n,�n/2�),(�n/2�,�n/22�), . . . , (�n/2 j−1�,�n/2 j�) of the
distinguished path are left edges. In the former case at most 2 j− 1 comparisons
are executed and this happens when key H(�n/2 j�) is placed either at the bottom
level or at the level next to bottom. In the latter case at most 2(j− 1) comparisons
are executed. Hence for each node of the distinguished path at height j = 1,2, . . . ,k
the maximum number of comparisons is one less than 2 times the height of the
sub-tree rooted at that node. For all the remaining internal nodes i the maximum

Floyd’s Heap Construction Algorithm 159

Fig. 2 Partition of the nodes of a complete binary tree into sets A,B,C,D

number of comparisons is 2h(Ti), where h(Ti) is the height of the sub-tree rooted at
node i. As the number of internal nodes of the distinguished path at heights 1,2, . . . ,k
is σ(n), the previous arguments show that the number

2(n−�log(n+ 1)�+λ (n))−σ(n) (7)

is an upper bound on the number of comparisons for procedure Floyd-buildheap.
We describe now an array H on which procedure Floyd-buildheap executes

exactly 2(n− �log(n+ 1)�+ λ (n))− σ(n) comparisons, thus showing that this
number is a tight upper bound for n even. In order to describe the structure of the
worst-case example H we partition the nodes of the complete binary tree into 4 sets
A,B,C,D. Set A contains all the nodes on the left side of the distinguished path. Set
D contains all nodes lying on the right side of the distinguished path. SetC contains
the nodes of the distinguished path of height j = 0,1,2, . . . ,k and set B contains all
the remaining nodes of the distinguished path. Figure 2 illustrates a complete binary
tree and the sets of nodes A,B,C,D.

The structure of array H is described in the following properties:

1. The elements of H are the n distinct keys 1,2, . . . ,n.
2. If i, j,k, l are nodes belonging to the sets A,B,C,D, respectively, then

H(i)> H(j)> H(k)> H(l). (8)

160 I. Paparrizos

Fig. 3 A worst-case complete binary tree for Lemma 2. It is n = 44, k = 2, |A| = 23, |B| = 3,
|C| = 3,|D|= 15. The number inside node j is the key H(j)

3. The keys in the distinguished path that belong to the set B are in increasing order
from the top to the bottom. The keys in the distinguished path that belong to the
set C are in increasing order from the top to the bottom.

4. If j is a node not belonging to the distinguished path, the sub-tree Tj is a
minimum heap.

Although there are more than one way to assign the keys 1,2, . . . ,n to the
elements of H so that properties (2)–(4) are satisfied, an easy way to do that is
as follows. Place the |A| largest keys to the sub-trees on the left of the distinguished
path so that each sub-tree is a minimum heap. The symbol |A| denotes the number
of elements of set A. Obviously |A| is the number of nodes on the left of the
distinguished path. Place in increasing order from top to bottom levels the next
|B| largest elements at the nodes of the distinguished path that belong to the set B.
Also, place in increasing order from top to down levels the next |C| largest elements
at the nodes of the distinguished path that belong to the setC. Obviously |B|+ |C|=
1+ �log(n)�= �log(n+ 1)�. Finally, place the remaining |D| smallest keys, i.e, the
keys 1,2, . . . , |B| at the sub-trees right to the distinguished path so that each sub-tree
is a minimum heap. Figure 3 illustrates such a worst-case example for n= 44.

Apply now procedure Floyd-buildheap on the array H described previously.
Let H(j : n), j = �n/2�,�n/2�− 1, . . . ,1 be the almost heap on which procedure
heapdown is applied to after it is called by procedure Floyd-buildheap. If j is not
a node at the distinguished path, key H(j), because of property (4), will move
all the way down to the bottom level of sub-tree Tj and 2h(Tj) comparisons
will be executed. If j is a node of the distinguished path belonging to set C,
key H(j), because of properties (2)–(4), will follow the distinguished path never
making a right turn. In this case, key H(j) will be placed at node n executing

Floyd’s Heap Construction Algorithm 161

2h(Tj)−1 comparisons. Finally, if node j belongs in set B, key H(j) will definitely
make a left turn before reaching the node �n/2k� of the distinguished path, see
properties (2) and (3). Then it will move all the way down to bottom level executing
2 comparisons per level. Again 2h(Tj) comparisons are executed.

Summing up the comparisons for all the calls of procedure heapdown we see that
the total number of comparisons is as stated in the Lemma. �

Observe that the array H described in the previous Lemma is not a minimum
heap. In particular the sub-trees rooted at nodes of the distinguished path are not
minimum heaps.

Theorem 1. The number 2n−2μ(n)−σ(n), where μ(n) is the number of ones and
σ(n) is the number of zeros after the last one in the binary representation of n, is a
tight bound on the worst-case number of comparisons for Floyd’s heap construction
algorithm.

Proof. If n is odd, then b0 = 1 and, hence, σ(n) = 0. Combining Lemmas 1 and 2
we see that a tight bound on the worst-case number of comparisons is the number
2[n−�log(n+ 1)�+ λ (n)]−σ(n) = 2[n− (λ (n)+ μ(n))+ λ (n)]−σ(n) = 2n−
2μ(n)−σ(n). �

4 Conclusion

Deriving worst case tight upper bound examples for an algorithm implies that the
worst-case complexity of the algorithm cannot be improved. We derived our worst-
case examples by the use of simple geometric ideas. As the binary trees and heaps
are involved in many other algorithms for which worst-case tight examples are not
known, we hope that our results will contribute in solving those problems.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley
Publishing Company (1974)

2. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. MIT,
Cambridge (2001)

3. Floyd, R.: Algorithm 245: treesort 3. Comm. ACM 7, 701 (1964)
4. Goodrich, M.T., Tamassia, R.: Algorithm Design, Foundations, Analysis, and Internet Exam-

ples. Wiley, New York (2002)
5. Knuth, D.: The art of computer programming, vol. 3, 2nd edn. Searching and Sorting. Addison

Wesley, Redwood city (1998)
6. Kruskal, C.P., Weixelbaum, D.: The worst case analysis of heapsort. Technical Report no 018a,

Department of Computer Science, New York University (1979)

162 I. Paparrizos

7. Paparrizos, I.: A tight bound on the worst-case number of comparisons for Floyd’s heap
construction algorithm. In: Proceedings of the 37th International Conference on Current Trends
in Theory and Practice of Computer Science (2011)

8. Schaffer, R.: Analysis of heapsort. Ph.D. Thesis, Department of computer science, Princeton
University (1992)

9. Williams, J.W.J.: Algorithm 232: heapsort. Comm. ACM 6, 347–348 (1964)

	A Tight Bound on the Worst-Case Number of Comparisonsfor Floyd's Heap Construction Algorithm
	1 Introduction
	2 Floyd's Heap Construction Algorithm
	3 A Tight Bound on the Worst-Case Number of Comparisons
	4 Conclusion
	References

